Euler number of the compactified Jacobian and

نویسنده

  • D. van Straten
چکیده

In this paper we show that the Euler number of the compactified Jacobian of a rational curve C with locally planar singularities is equal to the multiplicity of the δ-constant stratum in the base of a semi-universal deformation of C. In particular, the multiplicity assigned by Yau, Zaslow and Beauville to a rational curve on a K3 surface S coincides with the multiplicity of the normalisation map in the moduli space of stable maps to S. Introduction Let C be a reduced and irreducible projective curve with singular set Σ ⊂ C and let n : C̃ −→ C be its normalisation. The generalised Jacobian JC of C is an extension of JC̃ by an affine commutative group of dimension δ := dimH0(n∗(OC̃)/OC) = ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Very ampleness for Theta on the compactified Jacobian

It follows from [14, Section 17, p. 163] that 3Θ is very ample. In the singular case, D’Souza has constructed a natural compactification J̄0 for the Jacobian J0 of a complete, integral curve over an algebraically closed field [5]. The scheme J̄0 parametrizes torsion-free, rank 1 sheaves of Euler characteristic 0 on X . A natural question in this context is whether there is a canonical Cartier div...

متن کامل

Compactified Jacobians and Torelli Map

We compare several constructions of compactified jacobians using semistable sheaves, semistable projective curves, degenerations of abelian varieties, and combinatorics of cell decompositions and show that they are equivalent. We give a detailed description of the ”canonical compactified jacobian” in degree g − 1. Finally, we explain how Kapranov’s compactification of configuration spaces can b...

متن کامل

The compactified Picard scheme of the compactified Jacobian

Let C be an integral projective curve in any characteristic. Given an invertible sheaf L on C of degree 1, form the corresponding Abel map AL:C → J̄ , which maps C into its compactified Jacobian, and form its pullback map A L : Pic J̄ → J , which carries the connected component of 0 in the Picard scheme back to the Jacobian. If C has, at worst, double points, then A L is known to be an isomorphis...

متن کامل

Geometry of the theta divisor of a compactified jacobian

Contents 1. Introduction 1 1.1. Notation and Conventions 2 1.2. Brill-Noether varieties and Abel maps 4 1.3. Stability and semistability 6 2. Technical groundwork 9 2.1. Basic estimates 9 2.2. Basic cases 12 2.3. Divisors imposing independent conditions 14 3. Irreducibility and dimension 19 3.1. Irreducible components of the Theta divisor 19 3.2. Dimension of the image of the Abel map 24 4. Com...

متن کامل

Elliptic curves, Hilbert modular forms, and the Hodge conjecture

1.2. The first result of this type is due to Eichler ([E]) who treated the case where f = f11 is the unique weight 2 newform for Γ0(11) and E is the compactified modular curve for this group. Later, in several works, Shimura showed that the Hasse-Weil zeta functions of special models (often called canonical models) of modular and quaternionic curves are, at almost all finite places v, products ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008